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HEAT CONDUCTION IN SOLIDS WITH FINITE RATE OF DIFFUSION OF 

HEAT AND INITIAL CONDITIONS IN THE FORM OF RANDOM FUNCTIONS 

V. S. Grigorkiv, V. N. Okunenko, 
and Yu. A. Timofeev 

UDC 536.21 

The heat-conduction problem in solids with finite rate of diffusion of heat and 
initial conditions in the form of a random functions is examined. The basic 
probabilistic characteristics of the process are obtained. 

The behavior of real distributed objects under conditions of natural, industrial, and 
other noise are characterized by a certain uncertainty. The description of such systems with 
the help of well-known deterministic approaches it not always fruitful and often does not 
reflect the real picture. In studying heat-transfer processes, the circumstances indicated 
make it necessary to solve boundary-value problems for partial differential equations with a 
random right-hand side, random initial conditions, and random functions in the boundary condi- 
tions. 

We shall examine a homogeneous isotropic planar layer of matter with thickness I. We 
shall assume that there are no internal heat sources in the layer, the rate of diffusion of 
heat is finite, and the initial state of the layer is described with the help of random spa- 
tial functions. 

In order to determine the basic probabilistic characteristics of the temperature field in 
the layer, it is necessary to solve the following boundary-value problem: 

O2T (x, ~) ~ OT (x, ~) --  a OZT (x, ~) 

T~ O~ 2 O~ Ox 2 ' ( i )  

T(x,  O) -- ~ (x ) ,  OT(x, 0) - -  q~ (x), ( 2 )  

O T ( ( i - -  1)/ ,  "~) ( 3 )  M~ [T (x, "r)] ~ ~ i  + r ((i - -  1) I, "~) = 0, i = 1, 2,. 
Ox 

where aliaai = 0; Zr, a, and W are the relaxation time, coefficient of thermal diffusivity, 
and the rate of diffusion of heat. The parameters ~i, a2i characterize the interaction of 
the layer with the surrounding medium at zero temperature. The functions ~(x) and ~a(x) are 
random functions of the spatial coordinates. 

Using the procedure in [1], we can write the solution of the problem (1)-(3) in the 
form 

l 2 

n = !  0 /~=1 

(4) 
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where 

{Xn (x) }n= 

Eq. 
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Fig. i. Behavior of the function z(t) 
KT(t , x, x)Do-lX-2(x): l) steel; 2) iron; 
3) aluminum; 4) copper; the continuous 
curves are for T r # 0; the dashed curves 

are for T r = 0. 

* h .  (t) = 

t = . 

{ c o s ~ , j + [ l + 2 % ( k - - l ) l s i n v n / } e x p  --- for 6n<O; 

[ ( 2 - - k ) ( l + 2 ) + ( k - - 1 ) % t ] e x p ( - - 2 )  for ~ n ~ O ;  

2. 
-~-1 e x p [ ( k - - l ) l n  % J Z ( - - l / V + l ) ( k - 1 ) X  
2 "~ v= l  

1 (--.1)v7,~)t] for 8,~>0; Xexp [ (  2 

-~ 1 % ; 7n=--~-]8,,]~/2; 8 ,~=1- -4p2 ;  P,~=p~aW-1; 

are the normalized characteristic functions of the problem 

cl~x (x) § ~ x  (x) = o, M~ [X (x)] = O, i = 1, 2. 
dx 2 

The correlation function has the form 

i l 2 2 

n~=l n2=l 0 0 v=l  ]=I 

Setting x~ = xa = x in (5), we obtain the variance of the temperature field. 

If the rate of diffusion of heat is infinite (W = ~), then in view of the fact that 

ira{ ,} I +'I ~v~ 2"G = -- alan' v/~lim~ 2"G = -- co, 

(5) coincides with the corresponding results in [I]. 

(5) 
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As an example, we shall examine the random process ~:(x), whose correlation function has 
the form 

Do cos = ; i  cos =x2_! , D o = c o n s t  

The p a r a m e t e r s  of  the  p rob lem ( 1 ) - ( 3 )  a r e  as  f o l l o w s  

% ( x ) ~ 0 ,  % ~ 0 ,  !o=0.19"10"6 , i =  1, 2. 

F i g u r e  1 shows t h e  change i n  the  m e a n - s q u a r e  t e m p e r a t u r e  as  a f u n c t i o n  o f  c o o r d i n a t e s  
and time, where the characteristic size lo is chosen according to [2]. 

If T r equals the ratio of the Maxwelllan relaxation time and some function of the relaxa- 
tion coefficient [3], then the working equations proposed can be used without any changes to 
determine the corresponding probabilistic characteristics of the random multidimensional tem- 
perature fields of bounded, homogeneous, isotroplc bodies. In addition, the summation must 
be understood as summation with respect to the natural increasing order of the Laplacian 
operator of the corresponding multidimensional problem. 

l. 

2. 

3. 
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ONE-DIMENSIONAl, MODEL OF HEAT TRANSFER IN CRYOGENIC VACUUM- 

SHIELD THERMAL INSULATION WITH RADIANT HEAT SOURCES 

V. F. Getmanets, R. S. Mikhal'chenko, 
and P. N. Yurchenko 
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The heat-transfer problem in an insulation consisting of layers which receive heat 
from external source through radiation is numerically solved in the one-dimen- 
sional approximation~ 

It is well known that many characteristics of modern cryogenic devices are determined by 
the thermal properties of the vacuum-shield thermal insulation stacks. Accordingly, more 
efficient new compositions of such stacks are being developed in many countries. At the same 

P 
time, there is still sufficient margin for improvement left in existing vacuum-shleld insula- 
tion, inasmuch as the effective thermal conductivity of these stacks in cryogenic devices is 
at least 1.5-3 times higher than that of the best laboratory specimens [i, 2]. 

According to an earlier analysis [3], one of the causes of this worsening is the presence 
of numerous channels running across a stack of vacuum-shleld thermal insulation (gaps around 
the neck of the vessel, around the support rods, around the cooled object, between insulation 
layers, etc.) and letting hot radiation pass directly to the cold layers of the stack. Since 
that analysis [3] was a semiquantitative one and hardly any other studies on this subject were 
ever made, the authors have developed a model for calculating the heat transfer through the 
layers of vacuum-shield thermal insulation and taking into account the interaction of these 
layers with external radiant heat sources. 

The main difficulties in the mathematical formulation of such a problem arise due to the 
intricate dependence of the thermal flux entering the insulation layers on the law of tempera- 
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